Lagrange-Optimierung

Die Lagrange-Optimierung bzw. Ansatz wird für die Beschreibung einer Optimierung von ökonomischen Fragestellungen unter Beachtung von Nebenbedingungen und gilt als eine quantitative Methode der mathematischen Lösungsfindung. Nebenbedingungen stellen eine natürliche oder von Menschen geschaffene Einschränkung der potenziellen Auswahlmöglichkeiten von Alternativen in der Entscheidungsfindung.

Lagrange-Optimierung in der Haushaltstheorie

In der Haushalttheorie treten zwei ökonomischen Fragestellungen aus der Sicht der zwei ökonomischen Prinzipien auf:

  • Maximumprinzip: ein Haushalt maximiert sein Nutzen (Ziel) unter Beachtung seiner Ressourcenknappheit (Einkommen, Vermögen, soziale und politische Ressourcen, Inputs vom Haushalt).
  • Minimumprinzip: ein Haushalt minimiert seine Ressourceneinsatz (Ausgaben, Inputs) unter Beachtung seines Nutzensziel.

Dualität der Optimierung

Die zwei ökonomischen Prinzipien stellen einen Blickwinkel der Betrachtung des vorliegendes Optimierungsproblem der Haushalten dar. Stimmen die Bedingungen von beiden Blickwinkel überein, so ergeben sich die selben optimalen Lösung (Dualität). Das bedeutet, dass Dualität nur unter sonst gleichen Bedingungen (Ceteris-Paribus-Bedingung) austreten kann.

Lesen Sie mehr über Mikroökonomie

Mehr über Wirtschaftthemen lesen

Published by James E Njoroge, M. Sc. Economics - CEO & Founder

M. Sc. Economics - Economic Consultant, Business Coach and private Lecturer in Freiburg im Breisgau. CEO and Founder of Evansonslabs Consulting and Coaching. Finance consultant, insurance agency at ERGO Hauptagentur James Njoroge in Freiburg im Breisgau

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: